Critère d'Eisenstein

On suppose que A est factoriel et on considère $\mathbb{K} = \operatorname{Frac}(A)$.

Lemme 1. Le produit de deux polynômes primitifs est primitif.

Démonstration.

Soient $P,Q \in A[X]$ deux polynômes primitifs. On suppose par l'absurde que PQ n'est pas primitif. Comme A est factoriel, il existe donc $p \in A$ irréductible qui divise c(PQ). Ainsi (p) est un idéal premier, donc A/(p) est intègre, et A/(p)[X] aussi. Or c(P) = c(Q) = 1, donc \overline{P} et \overline{Q} ne sont pas nuls sur A/(p)[X]. Alors \overline{PQ} n'est pas nul sur A/(p)[X], et p ne divise pas PQ. Contradiction. Donc PQ est primitif.

Lemme 2. Pour $P, Q \in A[X]$, on a c(PQ) = c(P)c(Q).

Démonstration.

On écrit $AB = c(A)c(B)\frac{A}{c(A)}\frac{B}{c(B)}$, où les polynômes $\frac{A}{c(A)}$ et $\frac{B}{c(B)}$ sont primitifs. Par le Lemme 1, leur produit est également primitif. On obtient alors, en passant au contenu, que c(AB) = c(A)c(B).

Théorème 3. Soit $P \in A[X]$ non constant. Alors P est irréductible dans A[X] si, et seulement si, il est primitif et irréductible dans $\mathbb{K}[X]$.

 $D\'{e}monstration.$

- (\Leftarrow) Soit $P \in A[X]$ primitif et irréductible dans $\mathbb{K}[X]$. Si P(X) = Q(X)R(X) dans A[X], c'est vrai aussi dans $\mathbb{K}[X]$. Quitte à échanger Q et R, comme P est irréductible dans $\mathbb{K}[X]$, on suppose que $Q \in \mathbb{K}[X]^{\times}$, donc deg Q = 0 et $Q \neq 0$. On a alors $Q = a \in A$. On en déduit que P(X) = aR(X), donc $a \mid c(P)$. Mais comme c(P) = 1, $a \in A^{\times}$, donc P est irréductible.
- (\Rightarrow) Soit $P \in A[X]$ irréductible dans A[X]. On a c(P)=1, car sinon on peut écrire P=pP' avec p un irréductible de A divisant c(P). On suppose par l'absurde que P n'est pas irréductible. On a alors P(X)=Q(X)R(X) avec $Q,R\in \mathbb{K}[X]$. On écrit alors $Q(X)=\frac{a}{b}Q'(X)$ avec $Q'\in A[X]$ primitif et $a,b\in A$ premiers entre eux. Pour cela, on prend $b\in A$ un ppcm des dénominateurs des coefficients de Q, et $a\in A$ un pgcd des numérateurs des coefficients de Q, et on simplifie éventuellement la fraction $\frac{a}{b}$. On écrit de même $R(X)=\frac{c}{d}R'(X)$. Ainsi, bdP(X)=acQ(X)R(X), puis, en passant au contenu, bd=ac modulo A^{\times} . On a donc $P=\lambda Q'R'$, avec $\lambda\in A^{\times}$, mais comme P est irréductible dans A[X], Q' ou R' est dans $A[X]^{\times}=A^{\times}$, donc de degré 0, et P est irréductible dans $\mathbb{K}[X]$.

Théorème 4 (Eisenstein). Soit $P(X) = \sum_{k=1}^{n} a_k X^k \in A[X]$ non constant. On suppose qu'il existe $p \in A$ irréductible divisant tous les a_k sauf a_n et tel que p^2 ne divise pas a_0 . Alors P est irréductible dans $\mathbb{K}[X]$.

Démonstration.

Supposons que P est non irréductible dans $\mathbb{K}[X]$. Il existe alors $Q, R \in A[X]$ non constants tels que P = QR. Posons alors $Q(X) = \sum_{k=0}^q b_k X^k$ et $R(X) = \sum_{k=0}^r c_k X^k$ avec $b_k, c_k \in A$ et 0 < q, r < n. Comme A est factoriel et p irréductible, l'idéal (p) est premier, donc B = A/(p) est intègre. Projetons l'égalité P = QR dans B[X]:

$$\overline{P}(X) = \overline{a_n} X^n = \left(\sum_{k=0}^q \overline{b_k} X^k\right) \left(\sum_{k=0}^r \overline{c_k} X^k\right) = \overline{Q}(X) \overline{R}(X)$$

En effet, comme $\overline{a_n} \neq 0$, on a $\overline{b_q} \neq 0 \neq \overline{c_r}$. Cette égalité est encore vraie dans $\mathbb{L}[X]$, où $\mathbb{L} = \operatorname{Frac}(B)$. Comme $\mathbb{L}[X]$ est principal et X irréductible, l'unicité de la décomposition en facteurs irréductibles dans $\mathbb{L}[X]$ montre que X divise \overline{Q} et \overline{R} . Ainsi, $\overline{b_0} = \overline{c_0} = 0$ dans B, mais alors p^2 divise $b_0c_0 = a_0$. Contradiction.

Conclusion. Le critère d'Eisenstein permet d'identifier facilement des polynômes irréductibles. ⊲

Références

[Per] Daniel Perrin. Cours d'Algèbre. Ellipses